organic compounds

14336 measured reflections

 $R_{\rm int} = 0.014$

1563 independent reflections

1413 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Methoxy-3-oxopropanaminium chloride

Tobias Gruber,^a[‡] Christopher J. Schofield^a and Amber L. Thompson^{b*}

^aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and ^bChemical Crystallography. Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: amber.thompson@chem.ox.ac.uk

Received 18 November 2011; accepted 25 January 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.080; data-to-parameter ratio = 21.4.

In the title compound, $C_4H_{10}NO_2^+ \cdot Cl^-$, the central ethylene bond of the cation adopts a gauche conformation. The three H atoms of the $-NH_3^+$ group are engaged in strong and highly directional intermolecular N-H···Cl hydrogen bonds, which result in a tape-like arrangement along [010] of the respective ion pairs. In addition, weak intermolecular C-H···Cl and $C-H \cdots O$ interactions are present.

Related literature

For the synthesis of the title compound, see: Hansen (1963). For related structures, see: Akkerman et al. (2003); Robinson et al. (2004); Vilela et al. (2009); Tarafdar & Swamy (2010); Gossage et al. (2010); He et al. (2010). For information on the gauche effect, see: Amos et al. (1992). For details of the Hatom treatment, see: Cooper et al. (2010). For the weighting scheme used in the refinement, see: Watkin (1994); Prince (1982).

Experimental

Crystal data

$C_4H_{10}NO_2^+ \cdot Cl^-$	V = 6
$M_r = 139.58$	Z = 4
Monoclinic, $P2_1/c$	Mo K
a = 9.8469 (2) Å	$\mu = 0$
b = 5.3263 (1) Å	T = 1
c = 13.2804 (2) Å	0.28 >
$\beta = 99.4638(10)^{\circ}$	

^{687.04 (2)} Å³ α radiation .47 mm⁻ 50 K \times 0.13 \times 0.08 mm

‡ Present address: Institut für Organische Chemie, TU Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany,

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) $T_{\min} = 0.94, T_{\max} = 0.96$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	73 parameters
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
1563 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N8 - H81 \cdots C11^{i}$ $N8 - H82 \cdots C11$ $N8 - H83 \cdots C11^{ii}$ $C5 - H53 \cdots O4^{iii}$ $C7 - H72 \cdots C11^{iv}$	0.90 0.92 0.90 0.96 0.96	2.26 2.29 2.35 2.67 2.84	3.1456 (12) 3.1910 (12) 3.1923 (12) 3.5965 (18) 3.4708 (14)	171 (1) 171 (1) 157 (1) 163 (1) 124 (1)

Symmetry codes: (i) $-x + 2, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2009).

TG thanks Deutsche Forschungsgemeinschaft (DFG), Germany, for generous funding (GR 3693/1-1:1).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5384).

References

- Akkerman, F., Buschmann, J., Lentz, D., Luger, P. & Rödel, E. (2003). J. Chem. Crystallogr. 33, 969-975.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Amos, R. D., Handy, N. C., Jones, P. G., Kirby, A. J., Parker, J. K., Percy, J. M. & Su, M. D. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 549-558.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.
- Gossage, R. A., Jenkins, H. A. & Quail, J. W. (2010). J. Chem. Crystallogr. 40, 272-277.
- Hansen, B. (1963). Acta Chem. Scand. 17, 1307-1314.
- He, Y.-J., Zou, P., Wang, H.-Y., Wu, H. & Xie, M.-H. (2010). Acta Cryst. E66, o2115
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Robinson, R. I., Stephens, J. C., Worden, S. M., Blake, A. J., Wilson, C. & Woodward, S. (2004). Eur. J. Org. Chem. pp. 4596-4605.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tarafdar, P. K. & Swamy, M. J. (2010). Biochim. Biophys. Acta, 1978, 872-881. Vilela, S. M. F., Almeida Paz, F. A., Tomé, J. P. C., de Zea Bermudez, V.,
- Cavaleiro, J. A. S. & Rocha, J. (2009). Acta Cryst. E65, 01970.
- Watkin, D. (1994). Acta Cryst. A50, 411-437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supplementary materials

Acta Cryst. (2012). E68, o595 [doi:10.1107/S1600536812003297]

3-Methoxy-3-oxopropanaminium chloride

Tobias Gruber, Christopher J. Schofield and Amber L. Thompson

Comment

The asymmetic unit of the title compound, (I), consists of a 2-acetoxy-ethyl-ammonium cation and a chloride ion as shown in Figure 1. The ester motif [atoms C6/O2/C3/O4/C5] is approximately planar with the largest deviation from the mean plane for O2 (d = 0.029 Å). The central —CH₂—CH₂— unit is not in the often favoured antiperiplanar conformation, instead adopting a *gauche* conformation with a torsion angle of 57.42 (14)° for atoms O2—C6—C7—N8. This may be attributed to the stereoselective *gauche* effect (Amos *et al.*, 1992), though an influence of the crystal packing on the molecular conformation of (I) cannot be ruled out. For comparison, the observed torsion angle is 67.6° in 1,2-di-fluoroethane (Akkerman *et al.*, 2003), 73.7° for *O*-stearoylethanolamine hydrochloride (Tarafdar & Swamy, 2010) and 71.7° in 2-(benzoyloxy)ethanaminium nitrate (Gossage *et al.*, 2010).

The three N—H units of (I) are engaged in apparently strong and highly directional N⁺—H···Cl⁻ hydrogen bonds with three symmetry-related Cl⁻ ions (Table 1). These interactions result in a tape-like arrangement of the respective ion pairs parallel to the crystallographic *b* axis (Figure 2). In the packing, the corrugated two dimensional supramolecular network defined by the N—H···Cl interactions is connected with neighbouring strands *via* weak C—H···Cl and C—H···O contacts (Table 1) in the direction of the crystallographic *c* and *a* axes, respectively. Interestingly, the observed packing behaviour is very similar to the structure of glycine ethyl ester hydrochloride (He *et al.*, 2010), an isomer of (I), and the analogous glycine methyl ester (Vilela *et al.*, 2009).

Experimental

The title compound was prepared from 2-aminoethanol and acetyl chloride according to the literature (Hansen, 1963). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of (I) in chloroform.

Refinement

The structure was refined freely, except for the hydrogen atoms which were refined prior to the generation of the riding model (Cooper *et al.*, 2010). Weights were applied using a five parameter Chebychev polynomial (Watkin, 1994, Prince, 1982).

Dihedral angles calculated with *PLATON* (Spek, 2009); all other standard uncertainties calculated from the full variance co-variance matrix within *CRYSTALS* (Betteridge *et al.*, 2003).

Computing details

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003) and *PLATON* (Spek, 2009).

Figure 1

Molecular structure of (I) with displacement ellipsoids drawn at 50% probability. The dotted line indicates a hydrogen bond.

Figure 2

The corrugated two dimensional supramolecular network defined by the N—H…Cl interactions forming tapes [*i*: 2 - x,1/2 + y,3/2 - z; *ii*: 2 - x,-1/2 + y,3/2 - z].

3-Methoxy-3-oxopropanaminium chloride

Crystal data

C₄H₁₀NO₂^{+.}Cl⁻ $M_r = 139.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8469 (2) Å b = 5.3263 (1) Å c = 13.2804 (2) Å $\beta = 99.4638$ (10)° V = 687.04 (2) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Graphite monochromator ω scans Absorption correction: multi-scan *DENZO/SCALEPACK* (Otwinowski & Minor, 1997) $T_{\min} = 0.94, T_{\max} = 0.96$

Refinement

Refinement on F^2 Method, part 1, Chebychev polynomial, Least-squares matrix: full (Watkin, 1994; Prince, 1982) [weight] = $R[F^2 > 2\sigma(F^2)] = 0.032$ $1.0/[A_0 * T_0(x) + A_1 * T_1(x) \cdots + A_{n-1}] * T_{n-1}(x)]$ $wR(F^2) = 0.080$ where A_i are the Chebychev coefficients listed S = 0.93below and x = F / Fmax Method = Robust 1563 reflections Weighting (Prince, 1982) W = [weight] *73 parameters $[1-(delta F/6*sigma F)^2]^2$ A_i are: 37.6 62.5 38.0 0 restraints 16.9 4.31 $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$ Hydrogen site location: difference Fourier map $\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$ H-atom parameters constrained

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.92411 (3)	0.72604 (6)	0.59816 (2)	0.0244	
02	0.72167 (10)	1.11170 (19)	0.75243 (7)	0.0236	
C3	0.62577 (14)	1.0662 (3)	0.66935 (11)	0.0241	
04	0.53381 (11)	0.9165 (2)	0.66871 (8)	0.0335	
C5	0.64993 (16)	1.2257 (3)	0.58178 (12)	0.0307	
C6	0.70489 (15)	0.9789 (3)	0.84455 (10)	0.0257	
C7	0.76188 (14)	0.7166 (3)	0.84666 (10)	0.0240	
N8	0.91018 (12)	0.7208 (2)	0.83652 (9)	0.0235	
H51	0.7403	1.1944	0.5697	0.0451*	
H52	0.6422	1.3972	0.6003	0.0448*	
H53	0.5842	1.1883	0.5224	0.0448*	
H61	0.7569	1.0756	0.8995	0.0291*	

F(000) = 296

 $\theta = 5-27^{\circ}$

T = 150 K

 $R_{\rm int} = 0.014$

 $h = -12 \rightarrow 12$

 $k = -6 \rightarrow 6$

 $l = -17 \rightarrow 17$

 $\mu = 0.47 \text{ mm}^{-1}$

 $D_{\rm x} = 1.349 {\rm Mg} {\rm m}^{-3}$

Melting point: not measured K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Block, clear pale colourless

14336 measured reflections

1563 independent reflections 1413 reflections with $I > 2\sigma(I)$

 $0.28 \times 0.13 \times 0.08 \text{ mm}$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 5.2^{\circ}$

Cell parameters from 1729 reflections

supplementary materials

H62	0.6067	0.9749	0.8523	0.0288*
H71	0.7136	0.6156	0.7909	0.0287*
H72	0.7551	0.6399	0.9112	0.0286*
H81	0.9506	0.5763	0.8594	0.0342*
H82	0.9161	0.7420	0.7690	0.0341*
H83	0.9517	0.8494	0.8726	0.0346*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02820 (19)	0.02258 (18)	0.02136 (18)	-0.00083 (12)	0.00108 (12)	-0.00105 (12)
O2	0.0248 (5)	0.0223 (5)	0.0222 (5)	-0.0002 (4)	-0.0009 (4)	0.0002 (4)
C3	0.0238 (6)	0.0228 (6)	0.0243 (6)	0.0016 (5)	-0.0005 (5)	-0.0012 (5)
O4	0.0303 (5)	0.0348 (6)	0.0329 (6)	-0.0080(5)	-0.0025 (4)	0.0039 (5)
C5	0.0332 (8)	0.0305 (8)	0.0268 (7)	-0.0027 (6)	0.0000 (6)	0.0047 (6)
C6	0.0292 (7)	0.0278 (7)	0.0200 (6)	0.0021 (6)	0.0041 (5)	-0.0010 (5)
C7	0.0268 (7)	0.0229 (6)	0.0215 (6)	-0.0016 (5)	0.0017 (5)	0.0021 (5)
N8	0.0287 (6)	0.0202 (5)	0.0208 (5)	0.0032 (4)	0.0015 (4)	0.0012 (4)

Geometric parameters (Å, °)

O2—C3	1.3509 (16)	C6—H61	0.968
O2—C6	1.4459 (17)	С6—Н62	0.989
C3—O4	1.2057 (18)	C7—N8	1.4886 (18)
C3—C5	1.490 (2)	С7—Н71	0.973
C5—H51	0.945	С7—Н72	0.961
С5—Н52	0.952	N8—H81	0.896
С5—Н53	0.955	N8—H82	0.915
C6—C7	1.504 (2)	N8—H83	0.895
C3—O2—C6	116.20 (11)	С7—С6—Н62	110.2
O2—C3—O4	123.21 (13)	H61—C6—H62	109.8
O2—C3—C5	110.81 (12)	C6—C7—N8	110.65 (11)
O4—C3—C5	125.98 (13)	C6—C7—H71	111.4
С3—С5—Н51	107.9	N8—C7—H71	107.7
С3—С5—Н52	108.4	С6—С7—Н72	109.3
H51—C5—H52	109.3	N8—C7—H72	107.5
С3—С5—Н53	110.6	H71—C7—H72	110.2
H51—C5—H53	110.7	C7—N8—H81	110.1
Н52—С5—Н53	109.9	C7—N8—H82	108.2
O2—C6—C7	112.08 (11)	H81—N8—H82	110.0
O2—C6—H61	104.9	C7—N8—H83	109.3
С7—С6—Н61	109.3	H81—N8—H83	109.7
O2—C6—H62	110.3	H82—N8—H83	109.5

Hydrogen-bond geometry (Å, °)

	$D^{**}A$ $D^{***}A$ $D^{***}H^{***}A$
N8—H81···Cl1 ⁱ 0.90 2.2 N8—H82···Cl1 0.92 2.2	26 3.1456 (12) 171 (1) 29 3.1910 (12) 171 (1)

supplementary materials

N8—H83····Cl1 ⁱⁱ	0.90	2.35	3.1923 (12)	157 (1)
C5—H53…O4 ⁱⁱⁱ	0.96	2.67	3.5965 (18)	163 (1)
C7—H72···Cl1 ^{iv}	0.96	2.84	3.4708 (14)	124 (1)

Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+2, y+1/2, -z+3/2; (iii) -x+1, -y+2, -z+1; (iv) x, -y+3/2, z+1/2.